PROGRESS IN NATURAL SCIENCE

Vol. 17. No. 6. June 2007

Autonomous forward inference via DNA computing

Fu Yan', Li Genz, Li Yin1 and Meng Dazhi' ’

(1. DNA Computing Research Group, Department of Operational Research and Cybemetics, Institute of Applied Science Beijing Uni-

versity of Technology, Beijing 100022, China; 2. Department of Informatics and M athematical Modeling, Technical Univesity of Den

mark, Copenhagen, Demnmark)

Accepted on November 30, 2006

Abstract

Recent studies direct the researchers into building DN A computing machines with intelligence, which is measured by

three main points: autonomous, programmable and able to leam and adapt. Logical inference plays an important rok in programmable i

formation processing or computing. Here we present a new method to perform autonomous molecular forw ard inference for expert system.

A movel repetitive recognition site (RRS) technique is invented to design rule molecules in know ledge base. The inference engine runs au

tonomousy by digesting the ruk-molecule, using a Class I1B restriction enzyme Ppil. Concentration model has been built to show the fea-

sibility of the inference process under ideal chemical reaction conditions. Moreover we extend to implement a triggering communication

betw een molecular automata, as a further application of the RRS technique in our model.

Keywords:

In the past few years in DNA computing, stud-
ied "™'? have provided us a notion about the pro-
grammable and interactive attribute of DNA comput-
ing machine. The basic framework of DNA comput-
ing machine contains three main parts: sensor, pro-

(131 Sensors collect variant infor-

cessor; and actuator
mation from a large environment, and actuators affect
the environment based on the decision made by the
processor. The processor is the foremost core, be-
cause its inner program or algorithm determines the
effectiveness of DNA computing machine. To imple-
ment programmable and interactive automata to per-
form complex tasks, a self-controlled mechanism,
even with the ability of adaptation to the changing
environment, is necessary. Therefore, how to design
an autonomous processor is in concern. In this paper,
we present a method for autonomous forward infer-
ence, which may be useful in building the processor
of a DNA computing machine. For a direct applica-
tion, our model implements a large and parallel for-
ward inference mechanism for expert system. A series
of early studies "' have shown how to build for-
ward and backw ard inference chaining for ex pert sys-
tem. In our model, a rule in the knowledge base is
able to match more than one conclusion of the other
fired rules, which overcomes the restriction of rules

confronted to early work! 7.

In this model, we introduce a Class IIB restric-

RRS technique forward inference triggering communication. molecular automaton.

tion enzyme Ppil (5-NNNNN "NNNNNNN GAAC
NNNNN CTC NNNNNNNN ~ NNNNN-3)U'7 o
run the forward inference. Input facts and rules in
the knowledge base of an expert system are encoded
in dsDNA with sticky ends. Each fact-molecule con-
tains the left moiety of Ppil recognition site (RS for
short ): GAAC, while each rule-molecule contains
several right moiety of RS: CTC. We nominate this
scheme as RRS technique, i. e. repetitive recognition
site technique. Therefore, if some fact is present, its
sticky end will hybridize to the corresponding rule-
molecule to form an integral RS (---GAAC NNNNN
CTC--.

enzyme Ppil will digest the rule-molecule all the way

If all the facts for some rules are present,

till it releases its conclusion part. And then the con-
clusion may participate into matching course as a
newly produced input fact. The whole course of infer-
ence is autonomous.

In the later section, we show that the RRS tech-
nique can be further extended to implement a trigger-
ing communication between molecular automata.
Beyer et al. have done related work on molecular
translator, for the purpose of linking several compu-
tational devices together to perform more complex
tasks. Here we demonstrate that our model can be
another molecular translator, performing a complex
triggering communication between different automa-

ta.

* To whom correspondence should be addressed. F-mail; dzhmeng @bjut. edu. cn
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1 Brief introduction to the inference mecha-
nisms of expert system

Knowledge base is the basis of an expert system,
comprised of rules, individual facts and complex ob-
jects. To simplify the problem, we reduce the knowl-
edge base to sets of rules and facts only. The mecha-
nism of inference is defined as a way in solving a
problem based on logic. Generally, there are three
main categories of inference mechanisms: the forward
inference, the backward inference and the one mixed
in between. The forward inference is known as an in-
ference path from facts to conclusions based on certain
rules. An IF-THEN rule may contain several premis-
es and one conclusion. In condition that there are all
the facts corresponding to the premises contained in a
rule, the rule is fired and makes its conclusion. This
conclusion may act as another input fact to match oth-
er rules, if it is not a final conclusion. So there are
two essential stepsin aforward inference; searching a
solution path and matching between the facts and
rules. Final conclusions are made when no other rules
are being fired.

Here we define the graph of all the paths for an
inference system as a complete rule treel "', Search-
ing solution paths from facts to final conclusions is
searching paths from roots to leaves in the complete
rule tree. We use a node neither a root nor a leaf to
of which the

amount is important to keep the molecular inference

denote an intermediate conclusion,

process going on. It will be discussed in detail in Sec-
tion 3.5.

2 Implementation of forward inference

In this model, we use Ppil to run the forward
inference. Ppil’ s has a special recognition site (RS)-a
Smer random sequence flanked by GAAC and CTC.
If the recognition site is integral, Ppil will cut the
molecule at four cleavage sites, 7/12 on the left side,
and 13/8 on the right side, as shown in Fig. 1(a),
and for more details, see [ 17] . We make the Smer
random sequence in RS encode a fact. In the follow-
ing part, this portion is used as a sticky end to per-
form matching between a fact and its corresponding
premise in a rule.

5'-| NNNNN NNNNNNN NNNNNNNN NNNNN | 3 GAAC Fact |
-~ 12N S
3'-| NNNNN NNNNNNN NNNNNNNN NNNNN | -5 CTTG
(c)
CTC CTC GTTC
i) 8N 8N SN - 12N
Premise 1| GAG Premise 2| GAG Premise n GAG Conclusion i'| CAAG

Fig. 1.

Encoding of the facts and rules in knowledge base. (a) The cutting pattern of Ppil is 5'-7/12 GAAC NNNNN CTC 13/83';

(b) fact-molecule. A fact-molecule is a sh/url dsDNA molecuk with 12 bp random sequence the left moiety of Ppil’ s recognition site
GAAC/CTTG as well as a sticky end at 3 encoding a fact in the knowledge base; (¢) dsDNA representing the rules in the knowledge
base. The conclusion moiety on the right side of the rule molecule is comprised of the reverse sequence of the left RS as well as the reverse

sequence of the conclusion.

2.1 Encoding of facts

A fact is encoded at 3/*sticky end in a dsDNA,
which is called factmolecule (Fig. 1(b)). The dou-
ble-strand part of a fact-molecule contains a random
sequence with 12 bp fixed length as well as the left
moiety of the recognition site of Ppil, i.e. GAAC.
The 5Smer sticky end encodes the fact, which is com-
plementary to its corresponding premise in the rule-
molecule. To be concise, we define fact, and its cor-
responding premise has the same label.

2.2  Encoding of rules

A rule

IF (premise-1, premise-2, -4 premise 7 )
THEN (conclusion )
means that if the corresponding facts (fact-1, fact-2,
-+, fact-n ) are present, then the rule is fired to
make conclusion-i. We design a double-stranded rule-
molecule to encode a single rule (Fig. 1(c)). Each
rule-molecule has two parts—the premise moiety and
the conclusion moiety. Premises and facts with the
same label are encoded in Smer-long complementary
sequence. The structure of premise moiety is several
repetition of {premise, right RS, 8N}, in which 8N
means spacer with 8mer-long random sequence. The
conclusion moiety is comprised of the reverse sequence

(denoted by the upper label “ T”) of the left RS and
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the reverse sequence of the conclusion.
2.3 The forward inference process

A's mentioned above, if all the premises in a rule
are present, then the rule isfired to release its conclu-
sion into water solution, and this molecule may in re-
turn match other rules as a newly produced input
fact. In this way, the forward inference runs till no
other rules are fired.

Put the rule-molecules and fact-molecules togeth-
er. If one fact corresponding to the first premise of a
certain rule is present, then this fact-molecule will
hybridize to its counterpart in the rule-molecule and
thus initiate the forward inference. After hybridiza-
tion with ligase, they form an integral RS, thus Ppil
cuts the rule-molecule to expose the next premise in
form of a 3/*sticky end. Provided that all the neces-
sary facts are present, restriction enzy me will cut the
rule-molecule all the way until it reaches the final part
of the conclusion moiety. After releasing the conclu-
sion, the fired rule is broken and no longer partici-
pates in the inference.

To symbolize the inference process via DNA
computing, we introduce the following operators.

2.3.1

Defintion

[ ] and () denote a double stranded and single
stranded DN A molecule, respectively; = and < de-
o

note 3 -sticky end on the upper strand and lower
strand, respectively; Use | to separate two neighbor-
ing functional sequence; ~ denotes the complemen-
! &f

tary sequence; ()" denotes the reverse sequence;
denotes hybridization with ligase; Lpp
Ppil to cut the molecule; — means deducting the

functional molecule for the next reaction.

jymeans use

2.3.2 Matching algorithm

Suppose the matching process between rule-i
and its corresponding facts is at the jth time, j=1,

-y n. The fact-j molecule [ 12N | [RS | /7 is going
to match rule-i on the sticky end encoding premise-j
(pj | rRS I8N | -

| p, | /RS 18N ¢, RS 112N)"]
where we use f; to denote fact-j, p; to denote
premise-j, and ¢ to denote conclusion-i. [RS and
rRS denote the left and right moiety of the recogni-
tion site, respectively, i.e. GAAC and CTC. Be-
cause the fact and premise that have the same label
have complementary sequence, that is f; = p;, we
have fact-j molecule matching rule-i molecule as fol-
lows, where the part [RS| p;| RS represents an in-
tegral recognition site of Ppil.
[12N] RS | ;> & (p,| rRSI 8N -
| p,| ¥RSI8N| (¢;l IRSI12N)"]
=[12N| IRS| p;| rRS| 8N p;- | rRS| 8N
| pul rRSI8 NI (c;l 1RS| 120"
ppis SNIFGNITNIIRS] pjl rRS| 8N

pi+1+ <pj+1| *RS | 8N| --| p,,| rRS| 8N
(¢;| IRSI12N)"]

9(pj-+1| rRSI8N| | p,| rRSI8N | (¢,
| IRS|12N)"]

Similarly, when j goesfrom 1to n—1, we have
[12N] RS | f.)E (p.| rRS|8 N
(il IRS | 12N) 1 >[ 12N IRS| ¢

In this matching, we see that the output conclu-
sion of rule-i [ 12N| RS ¢;) has the same structure
with the input fact. Therefore, it can be used in later
inference process. Next we use a very simple example
to describe the forward inference process in a more
vivid way. Set the knowledge base composed of two
rules written in the following symbolic form, and
suppose that two facts P and R are present.

Rule 1: if P then O
Rule2: if Q and R then S

Then the inference process is

[12N | RS | ) & (pp /RS 18N ¢y [IRS 112N)"] —[12N [ RS |cp)
[12N | IRS lcp) & py |rRS 18N Ipg [ /RS 18N | (e5 | IRS |12N)"]

— (py | RS I8N | (eg RS 11207
(12N RS | 1) & pr |rRS 18N | (cg [IRS [12N)"] > [ 12N | IRS |eg)

Later in Fig. 2 we explicitly describe this infer-
ence process. To check what final conclusions have
been made, we use surface-based fluorescence detec-
tion. According to the complete rule tree, we array

all the leaves on the surface in form of dsDNA with
sticky end complementary to that of the correspond-
ing conclusion molecules. Also we should tag fluores-
cence on the conclusion moiety of all the rules that are
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able to deduct leaves, i.e. the final conclusions. So inference will hybridize to their counterparts on the
when the inference processis over, put the surface in- surface. Then check the fluorescence on the surface
to the water solution, thus the final conclusions of the and read out what final conclusions have been made.
(a) Fact p Rule 1
L. ] GAAC o] CTC 3e . B
CTTG [ e GAG & CAAG

l Matching & hybridizing with ligase

GAAC o CTC ' GTTC ‘
o — - 8 N —~ 12N
&1 CTTG Pp GAG Co CAAG
1 Ppi | cutting
GTTC . _ GAAC G|
= | 1. € 21 o
B G Ay 2N ‘ o CTTG

Conclusion Q, also as newly produced input fact Q

(b)
Fact Q Rule 2
] GAAC Car ] CTC ‘ wck| . GTTC .
| CTTG [ P g | oM Pr 0 I gaaay 2N
1 Matching & hybridizing with ligase
. ( ~ ~ ~ a—
_J ‘ GAAC Q CTC &N CTC 8N & GTTC 2N
12N CTTG Po GAG Pr GAG Cs CAAG
1 Ppi | cutting
Fact R
GAAC f CEC GTTC
12N x| 8N - ——— 12N
CTTG [ e GAG (2 CAAG
1 Matching & hybridizing with ligase
_l GAAC fe CTC GTTC 4
— . 8N = - 12N
12N CTTG Pr GAG Cs CAAG
1 Ppi I cutting
GTTC gy GAAC G|
T 12N ie 12N —
| ¢ CAAG CTTG

Final conclusion S
Fig. 2. The inference process. The forward inference is a cycle of matching, hybridizing and cutting by enzyme Ppil. The process is au-
tonomous. When a fact-molecule matches its corresponding premise in a ruk, then it hybridizes to the rule-molecule on the 3 sticky end
and thus an integral Ppil recognition site is formed. Enzyme Ppil cuts the rulemolecule to expose the next premise. The digesting process
will stop if only the conclusion partis met. Then the conclusion of afired rule will gointo water solution as a newly produced input fact and
participate in the next cycle of inference. (a) Matching between fact-P and mle 1 produces new input fact-Q; (b) two matchings between

fact-Q and rule 2 form RS of Ppil and thus rle 2 is cut to expose the next premise-R. After fact-R and rule 2 match to each other, the final

Coelusion- $id ninde:
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2.4 Concentration analysis for the example in 2. 3

There are two main factors that affect the
amount of conclusions. One is the depth of inference;
the other is the embranchment of the reactants in the
process of inference. Firstly, we review the example
in 2.3 to demonstrate the effect caused by single path
inference. A concentration model is built to calculate
the concentration of the resultants. To be concise, we
do not take into account the time period for the reac-
tion to reach equilibrium, and thus reduce this prob-
lem into simply considering the equilibrium concentra-
tion of reactants and resultants under ideal chemical

reaction conditions.

In this example, each inference is implemented
by hybridization and enzyme cutting. Take Rule 1 as
an example of the basic inference process, it involves
tw o reactions as follows

hybridizing: P+ P Q ==PQ
cutting: PQ — S PQ, +0
where P— Q represents Rulel-molecules, PQ repre-
sents the product of hybridization with ligase, and QO
is the conclusion of this inference. Since reactant P is
the input fact, we suppose P is sufficient, and P— Q
is relatively insufficient. Define equilibrium coeffi-
cient K,=[ PQ]/[ P— Q], where [ PQ] 1is the con-
centration of resultant PQ, | P— Q] is the concentra-
tion of P— Q at the time when the reaction reaches its
equilibrium . Define K, in the same way as K, K,=
[ O]/ PO], where [ Q] is the concentration of Q
and [ PQ] is the same one in definition in K. So we
have the concentration of Q satisfying
B KK,
[0 = 1P Ol TR T K,
where [ P— Q]o is the initial concentration of P— Q.
We call it the reaction equation. As aresult, after one
step of inference, including one hybridization and one
enzyme cutting, the amount of conclusion molecules
KK,

decreases by m

Further, we consider n steps of inference in a
single path without embranchment. We suppose the
equilibrium constants of all the hybridizations equal to
K1, and the counterparts of all the cutting reactions
equal to K,. Here K| and K, are mainly determined
by the reaction temperature. Since the active temper-
ature of the enzyme Ppil is about 310 K, the tube ex-
periment should be performed at about 310 K. The
pH, and salinity, of the solution are also important fac-

tors to the values of K| and K,.

Therefore, in general, if a rule has n premises
it needs n steps of hybridization and cutting to pro-
duce its conclusion, of which concentration satisfies

[ condusion|
KK

= [rule]

1+ (K1 + K1 KD+ KiKat+ -+ KT 'KS D

Secondly, we take the embranchment into con-
sideration. Embranchment is the process that several
different rules use one intermediate conclusion as an
input fact according to the complete rule tree, and
thus resulting in competitions for the intermediate
conclusion molecules. If the competition occurs and
makes the amount of conclusion molecules fall rapid-
ly, we can use the amplification method in Section
3.5 to avoid the amount of conclusion from decreasing
to an undetected level.

2.5 Discussion on the experimental issues of the in-
ference model

If an inference system has only one path, we can
easily design the initial amount of the fact-molecules
and the rule-molecules. However, in a complete rule
tree, when all possible inferences run on parallel in
different paths, it will become complex to determine
the exact initial amount of rule-molecules and fact-
molecules. In this matter, two factors may help to
determine the relative amount of these two kinds of
reactants. One is the times of a reactant used in the
inference process. Reactants that will be used more
times will have a relatively higher initial amount than
that of the others. Next is the inference depth of a
reactant used in the complete rule tree, that is, reac-
tants that will be used in deep inference depths will
have a relatively smaller initial amount than that of
the others.

Because we encode a fact and its corresponding
premise in a Smer-long complementary sequence, it
will limit the scale of inference. The number of facts
and conclusions together will be less than 512. It is
determined by the cutting pattern of Ppil. Under this
scale, when there are not many branches in the com-
plete rule tree, we can simply mix the initial fact-
molecules and rule-molecules together to run the for-
ward inference. Otherwise, when the branches of in-
ference are too many, each step of inference may re-
sult in a low yield of its conclusions. So in this case,
we make the artificial contrel as the, follow ing steps
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(amplifying method):

Step 1: Before the inference, divide the complete
rule tree into several levels L1, Loy -4 Ly.

At each level, we define its leaves as L-conclu-

sions. Prepare n empty test tubes Ty T5 -5 T,.

Step2: For k=1, --» n, select all the rules that
will be used in L; and put the corresponding rule-

molecules into test tube T.

Step 3: Put the initial fact-molecules into 71 and
start to run the incomplete forw ard inference.

Step4: For k=1, ---, n—1 carry on the follow -

ing iterations.

(1) Pick up the L-conclusions of L; in T by
beads and amplify them by, PCR. Then put them
back to Tj and thus form 7.

!
(2) Put Ty into Ts+1 and the inference is driven

forward.

Step 5: The final conclusion of the forward in-

ferenceis in T, . Use the method described in Section

2.3 and check what conclusions have been made.

By these several steps of amplification of some of
the intermediate conclusions, the forward inference
will continue and the yield of the final conclusions will
be high enough to be detected.

3 Extended application of RRS technique to
a triggering communication between automata

Studied ' '? in these few years lead researchers
to implement diverse DNA computing machines that
are able to function in many problem-solving solu-
tions. To us, itis of much interest to broaden the a-
bility of the molecular computing machines by linking
them together. However, the communication be-
tween different computing machines is not easy to
solve. Recent work by Beyer and Simmel™ demon-
strated a molecular translator; which is able to trans-
late an arbitrary input ssDNA into a functional out-
put. It is interesting to find that if the output of the
molecular translator has the same structure of the in-
put molecular, then a 1 °1 triggering communication
can be carried out. Here, we extend to implement a
m *n triggering communication between automata

based on our model.

A 1°1 triggering communication is that the out-
put of one automaton can activate another automaton
to run according to a certain communication path.
Similarly, a m *n triggering communication is that
the outputs of m automata can trigger the other n
automata to run according to certain paths or rules.
Actually between two automata, this is a concatena-
tion operation. But in complex network, the trigger-
ing communication can be n 1 or 1 *n. In this case,
a forward inference based on rules (communication
paths) seems necessary. To be concise, we exemplify
a 2 *1 triggering communication between three au-
tomata. Theoretically, our model can be used to im-
plement m *n triggering communication, for any
positive integer m and n.

3.1 Example

Suppose Benenson’ s automaton is used ' . De-
fine three automata 4, B, and C, the outputs of A4
and B (shown as a, b) can trigger C to start run-
ning, the triggering signal is ¢. So the triggering
path is: if a, b then ¢, which is defined by a rule-
molecule (@, b)—>c. All of a, b, ¢ have the same
structure to the fact-molecule (Fig. 3(a)). Modify
the automaton’ s accepting verification part to have
the same structure to the conclusion moiety in our
model; and add a triggering signal receiver at the very
beginning of automaton (Fig. 3(b)). The triggering
communication path is represented by rule-molecule
(a, b)—>c, (Fig. 3(c)). So it is easy to see when
automaton 4 makes its output @, and B makes out-
put b, then they release a and b in form of newly
produced input facts, which together with the rule-
molecule (@, b)—c run the forward inference till an
activating signal ¢ is made. Finally, c¢ activates au-
tomaton C by hybridizing on the ¢ sticky end to form
integral recognition site of Ppil. Ppil then cuts the
automaton to expose its initial state (Fig. 3(d)).

4 Conclusion

In this paper, an algorithm to perform molecular
forward inference via DNA computing has been de-
scribed. By using a Class 1B restriction enzyme Ppil
as well as introducing a novel repetitive recognition
site (RRS) technique, an autonomous forward infer-
ence mechanism has been built.
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(a)
l GAAC a GAAC W) GAAC c
12N : 12N 12N
CTTG CTTG CTTG
(b)
Automaton A CTC GTTC
Activating signal - 8N Automaton main body 12N
receiver GAG a' CAAG
Automaton B 2
cTc GTTC
Activating signal .| 8N Automaton main body T _ 12N
L receiver GAG b CAAG
Automaton C
(& |6 GTTC
8N i \ 71
L : GAG Automaton main dey ,Ac:‘:Plllng CAAG 12N
sult
(c)
CTC CIC GTTC ]
8N = 8N - 12N
Llio® GAG b GAG c CAAG
(d)
Triggering signal C
GAAC c | Inactive automaton C
12N
CTTG CTC GTTC
i Automaton = 7}
] ¢ ekl M P Accepting” IR 12N
ﬂ Matching and hybridizing
H GAAC c CTC INITIAL GTTC
= :
= 8N - Automaton main body — _—
k 12N CTTG C GAG STATE Acr‘t::iﬁtlll"b CAAG
JL Ppil cutting
” GTTC o
l—"——l.. T Automaton main body "‘i‘;iﬂi;“g AR 12N

Active automaton C

Fig 3.

Extension application of our model to a triggering communication betw een automata along certain communication path. (a) T he

conclusions made by automata 4. B and G (b) the modifications to the Benenson’ s automaton in order to addin atriggering mechanism;

() rule molecule represents a triggering communication path (a, b)—>¢; (d) the triggering communication process is the same to the for-

ward inference mentioned above. When rule (a, b)—>cisfired atriggering signal ¢ is released. Then ¢ hybridizes to the inactive automa-

ton C on the sticky end, which encodes a triggering signal receiver. Fimally, there forms an integral recognition site and thus Ppil cuts au-

tomaton C to exposeits initial state. Automaton C then becomes active to run.

When one rule-molecule in know ledge base cap-
tures the facts according to each of its premises, the
rule is fired and produces its conclusion, which may
match the premise on other rules as a new input fact,
that is, one output conclusion of a certain rule may be
the input fact of other rules. In early studies, one
rule can only match one kind of conclusion of other
fired rules. The advantage of this model is that a rule
is able to match more than one conclusion of other
fired rules.

In the end, we further extend our model to im-
plement a triggering communication between different

automata, i.e. using the output of one automaton to
activate another automaton. This autonomous molec-
ular forward inference mechanism ensures m ‘n trig-
gering communication network, providing a kind of
linkage between several molecular computing ma-
chines to perform complex task.
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